Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 14(7)2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35891387

RESUMEN

Pathogen-associated molecular patterns, including cytoplasmic DNA and double-strand (ds)RNA trigger the induction of interferon (IFN) and antiviral states protecting cells and organisms from pathogens. Here we discovered that the transfection of human airway cell lines or non-transformed fibroblasts with 24mer dsRNA mimicking the cellular micro-RNA (miR)29b-1* gives strong anti-viral effects against human adenovirus type 5 (AdV-C5), influenza A virus X31 (H3N2), and SARS-CoV-2. These anti-viral effects required blunt-end complementary RNA strands and were not elicited by corresponding single-strand RNAs. dsRNA miR-29b-1* but not randomized miR-29b-1* mimics induced IFN-stimulated gene expression, and downregulated cell adhesion and cell cycle genes, as indicated by transcriptomics and IFN-I responsive Mx1-promoter activity assays. The inhibition of AdV-C5 infection with miR-29b-1* mimic depended on the IFN-alpha receptor 2 (IFNAR2) and the RNA-helicase retinoic acid-inducible gene I (RIG-I) but not cytoplasmic RNA sensors MDA5 and ZNFX1 or MyD88/TRIF adaptors. The antiviral effects of miR29b-1* were independent of a central AUAU-motif inducing dsRNA bending, as mimics with disrupted AUAU-motif were anti-viral in normal but not RIG-I knock-out (KO) or IFNAR2-KO cells. The screening of a library of scrambled short dsRNA sequences identified also anti-viral mimics functioning independently of RIG-I and IFNAR2, thus exemplifying the diverse anti-viral mechanisms of short blunt-end dsRNAs.


Asunto(s)
COVID-19 , Interferón Tipo I , MicroARNs , Antivirales/farmacología , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/metabolismo , ARN Helicasas DEAD-box/genética , Humanos , Subtipo H3N2 del Virus de la Influenza A/genética , Interferón Tipo I/genética , ARN Bicatenario , SARS-CoV-2
2.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33418931

RESUMEN

Candidaalbicans represents one of the most common fungal pathogens. Due to its increasing incidence and the poor efficacy of available antifungals, finding novel antifungal molecules is of great importance. Camphor and eucalyptol are bioactive terpenoid plant constituents and their antifungal properties have been explored previously. In this study, we examined their ability to inhibit the growth of different Candida species in suspension and biofilm, to block hyphal transition along with their impact on genes encoding for efflux pumps (CDR1 and CDR2), ergosterol biosynthesis (ERG11), and cytotoxicity to primary liver cells. Camphor showed excellent antifungal activity with a minimal inhibitory concentration of 0.125-0.35 mg/mL while eucalyptol was active in the range of 2-23 mg/mL. The results showed camphor's potential to reduce fungal virulence traits, that is, biofilm establishment and hyphae formation. On the other hand, camphor and eucalyptol treatments upregulated CDR1;CDR2 was positively regulated after eucalyptol application while camphor downregulated it. Neither had an impact on ERG11 expression. The beneficial antifungal activities of camphor were achieved with an amount that was non-toxic to porcine liver cells, making it a promising antifungal compound for future development. The antifungal concentration of eucalyptol caused cytotoxic effects and increased expression of efflux pump genes, which suggests that it is an unsuitable antifungal candidate.


Asunto(s)
Antifúngicos/farmacología , Alcanfor/farmacología , Candida albicans/patogenicidad , Eucaliptol/farmacología , Virulencia/efectos de los fármacos , Animales , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Candida albicans/fisiología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Proteínas Fúngicas/metabolismo , Hígado/citología , Hígado/efectos de los fármacos , Hígado/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Especies Reactivas de Oxígeno/metabolismo , Porcinos
3.
EXCLI J ; 19: 1436-1445, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33312106

RESUMEN

Due to limited arsenal of systemically available antifungal agents, infections caused by Candida albicans are difficult to treat and the emergence of drug-resistant strains present a major challenge to the clinicians worldwide. Hence further exploration of potential novel and effective antifungal drugs is required. In this study we have explored the potential of a flavonoid, astragalin, in controlling the growth of C. albicans, in both planktonic and biofilm forms by microdilution method; and in regulating the morphological switch between yeast and hyphal growth. Astragalin ability to interfere with membrane integrity, ergosterol synthesis and its role in the regulation of genes encoding for efflux pumps has been addressed. In our study, astragalin treatment produced good antimicrobial and significant antibiofilm activity. Anticandidal activity of astragalin was not related to ERG11 downregulation, neither to direct binding to CYP51 enzyme nor was linked to membrane ergosterol assembly. Instead, astragalin treatment resulted in reduced expression of CDR1 and also affected cell membrane integrity without causing cytotoxic effect on human gingival fibroblast cells. Considering that astragalin-mediated decreased expression of efflux pumps increases the concentration of antifungal drug inside the fungal cells, a combinatorial treatment with this agent could be explored as a novel therapeutic option for candidiasis.

4.
Nucleic Acids Res ; 48(22): 12917-12928, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33245767

RESUMEN

Sequence-dependent structural deformations of the DNA double helix (dsDNA) have been extensively studied, where adenine tracts (A-tracts) provide a striking example for global bending in the molecule. However, in contrast to dsDNA, sequence-dependent structural features of dsRNA have received little attention. In this work, we demonstrate that the nucleotide sequence can induce a bend in a canonical Watson-Crick base-paired dsRNA helix. Using all-atom molecular dynamics simulations, we identified a sequence motif consisting of alternating adenines and uracils, or AU-tracts, that strongly bend the RNA double-helix. This finding was experimentally validated using atomic force microscopy imaging of dsRNA molecules designed to display macroscopic curvature via repetitions of phased AU-tract motifs. At the atomic level, this novel phenomenon originates from a localized compression of the dsRNA major groove and a large propeller twist at the position of the AU-tract. Moreover, the magnitude of the bending can be modulated by changing the length of the AU-tract. Altogether, our results demonstrate the possibility of modifying the dsRNA curvature by means of its nucleotide sequence, which may be exploited in the emerging field of RNA nanotechnology and might also constitute a natural mechanism for proteins to achieve recognition of specific dsRNA sequences.


Asunto(s)
Adenina/química , ADN/genética , ARN Bicatenario/genética , Uracilo/química , ADN/química , ADN/ultraestructura , Microscopía de Fuerza Atómica , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Motivos de Nucleótidos/genética , ARN Bicatenario/química , ARN Bicatenario/ultraestructura
5.
J Cell Sci ; 134(5)2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32917739

RESUMEN

In clonal cultures, not all cells are equally susceptible to virus infection, and the mechanisms underlying this are poorly understood. Here, we developed image-based single-cell measurements to scrutinize the heterogeneity of adenovirus (AdV) infection. AdV delivers, transcribes and replicates a linear double-stranded DNA genome in the nucleus. We measured the abundance of viral transcripts using single-molecule RNA fluorescence in situ hybridization (FISH) and the incoming 5-ethynyl-2'-deoxycytidine (EdC)-tagged viral genomes using a copper(I)-catalyzed azide-alkyne cycloaddition (click) reaction. Surprisingly, expression of the immediate early gene E1A only moderately correlated with the number of viral genomes in the cell nucleus. Intranuclear genome-to-genome heterogeneity was found at the level of viral transcription and, in accordance, individual genomes exhibited heterogeneous replication activity. By analyzing the cell cycle state, we found that G1 cells exhibited the highest E1A gene expression and displayed increased correlation between E1A gene expression and viral genome copy numbers. The combined image-based single-molecule procedures described here are ideally suited to explore the cell-to-cell variability in viral gene expression in a range of different settings, including the innate immune response.


Asunto(s)
Adenoviridae , Replicación Viral , Adenoviridae/genética , Ciclo Celular/genética , Genoma Viral/genética , Hibridación Fluorescente in Situ , Replicación Viral/genética
7.
Pharmaceuticals (Basel) ; 14(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396973

RESUMEN

Due to the high incidence of fungal infections worldwide, there is an increasing demand for the development of novel therapeutic approaches. A wide range of natural products has been extensively studied, with considerable focus on flavonoids. The antifungal capacity of selected flavones (luteolin, apigenin), flavonols (quercetin), and their glycosylated derivatives (quercitrin, isoquercitrin, rutin, and apigetrin) along with their impact on genes encoding efflux pumps (CDR1) and ergosterol biosynthesis enzyme (ERG11) has been the subject of this study. Cytotoxicity of flavonoids towards primary liver cells has also been addressed. Luteolin, quercitrin, isoquercitrin, and rutin inhibited growth of Candida albicans with the minimal inhibitory concentration of 37.5 µg/mL. The application of isoquercitrin has reduced C. albicans biofilm establishing capacities for 76%, and hyphal formation by yeast. In vitro treatment with apigenin, apigetrin, and quercitrin has downregulated CDR1. Contrary to rutin and apigenin, isoquercitrin has upregulated ERG11. Except apigetrin and quercitrin (90 µg/mL and 73 µg/mL, respectively inhibited 50% of the net cell growth), the examined flavonoids did not exhibit cytotoxicity. The reduction of both fungal virulence and expression of antifungal resistance-linked genes was the most pronounced for apigenin and apigetrin; these results indicate flavonoids' indispensable capacity for further development as part of an anticandidal therapy or prevention strategy.

8.
mBio ; 10(6)2019 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-31874914

RESUMEN

Multidrug resistance (MDR) has emerged in hospitals due to the use of several agents administered in combination or sequentially to the same individual. We reported earlier MDR in Candida lusitaniae during therapy with amphotericin B (AmB), azoles, and candins. Here, we used comparative genomic approaches between the initial susceptible isolate and 4 other isolates with different MDR profiles. From a total of 18 nonsynonymous single nucleotide polymorphisms (NSS) in genome comparisons with the initial isolate, six could be associated with MDR. One of the single nucleotide polymorphisms (SNPs) occurred in a putative transcriptional activator (MRR1) resulting in a V668G substitution in isolates resistant to azoles and 5-fluorocytosine (5-FC). We demonstrated by genome editing that MRR1 acted by upregulation of MFS7 (a multidrug transporter) in the presence of the V668G substitution. MFS7 itself mediated not only azole resistance but also 5-FC resistance, which represents a novel resistance mechanism for this drug class. Three other distinct NSS occurred in FKS1 (a glucan synthase gene that is targeted by candins) in three candin-resistant isolates. Last, two other NSS in ERG3 and ERG4 (ergosterol biosynthesis) resulting in nonsense mutations were revealed in AmB-resistant isolates, one of which accumulated the two ERG NSS. AmB-resistant isolates lacked ergosterol and exhibited sterol profiles, consistent with ERG3 and ERG4 defects. In conclusion, this genome analysis combined with genetics and metabolomics helped decipher the resistance profiles identified in this clinical case. MDR isolates accumulated six different mutations conferring resistance to all antifungal agents used in medicine. This case study illustrates the capacity of C. lusitaniae to rapidly adapt under drug pressure within the host.IMPORTANCE Antifungal resistance is an inevitable phenomenon when fungal pathogens are exposed to antifungal drugs. These drugs can be grouped in four distinct classes (azoles, candins, polyenes, and pyrimidine analogs) and are used in different clinical settings. Failures in therapy implicate the sequential or combined use of these different drug classes, which can result in some cases in the development of multidrug resistance (MDR). MDR is particularly challenging in the clinic since it drastically reduces possible treatment alternatives. In this study, we report the rapid development of MDR in Candida lusitaniae in a patient, which became resistant to all known antifungal agents used until now in medicine. To understand how MDR developed in C. lusitaniae, whole-genome sequencing followed by comparative genome analysis was undertaken in sequential MDR isolates. This helped to detect all specific mutations linked to drug resistance and explained the different MDR patterns exhibited by the clinical isolates.


Asunto(s)
Candida/efectos de los fármacos , Candida/genética , Farmacorresistencia Fúngica/genética , Azoles/farmacología , Hibridación Genómica Comparativa , Flucitosina/farmacología , Proteínas Fúngicas/genética , Polimorfismo de Nucleótido Simple
9.
Nucleic Acids Res ; 46(18): 9309-9320, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30215772

RESUMEN

Perturbation of gene expression by means of synthetic small interfering RNAs (siRNAs) is a powerful way to uncover gene function. However, siRNA technology suffers from sequence-specific off-target effects and from limitations in knock-down efficiency. In this study, we assess a further problem: unintended effects of siRNA transfections on cellular fitness/proliferation. We show that the nucleotide compositions of siRNAs at specific positions have reproducible growth-restricting effects on mammalian cells in culture. This is likely distinct from hybridization-dependent off-target effects, since each nucleotide residue is seen to be acting independently and additively. The effect is robust and reproducible across different siRNA libraries and also across various cell lines, including human and mouse cells. Analyzing the growth inhibition patterns in correlation to the nucleotide sequence of the siRNAs allowed us to build a predictor that can estimate growth-restricting effects for any arbitrary siRNA sequence. Competition experiments with co-transfected siRNAs further suggest that the growth-restricting effects might be linked to an oversaturation of the cellular miRNA machinery, thus disrupting endogenous miRNA functions at large. We caution that competition between siRNA molecules could complicate the interpretation of double-knockdown or epistasis experiments, and potential interactions with endogenous miRNAs can be a factor when assaying cell growth or viability phenotypes.


Asunto(s)
Proliferación Celular/genética , MicroARNs/genética , Hibridación de Ácido Nucleico , Interferencia de ARN , ARN Interferente Pequeño/genética , Células A549 , Animales , Línea Celular , Supervivencia Celular/genética , Células Cultivadas , Embrión de Mamíferos/citología , Fibroblastos/citología , Fibroblastos/metabolismo , Expresión Génica , Células HeLa , Humanos , Ratones , Transfección
10.
Clin Cancer Res ; 24(16): 3981-3993, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29748183

RESUMEN

Purpose: Combination therapy of adoptively transferred redirected T cells and checkpoint inhibitors aims for higher response rates in tumors poorly responsive to immunotherapy like malignant pleural mesothelioma (MPM). Only most recently the issue of an optimally active chimeric antigen receptor (CAR) and the combination with checkpoint inhibitors is starting to be addressed.Experimental Design: Fibroblast activation protein (FAP)-specific CARs with different costimulatory domains, including CD28, Δ-CD28 (lacking lck binding moiety), or 4-1BB were established. CAR-T cells were characterized in vitro and antitumor efficacy was tested in vivo in a humanized mouse model in combination with PD-1 blockade. Finally, the Δ-CD28 CAR was tested clinically in a patient with MPM.Results: All the three CARs demonstrated FAP-specific functionality in vitro Gene expression data indicated a distinct activity profile for the Δ-CD28 CAR, including higher expression of genes involved in cell division, glycolysis, fatty acid oxidation, and oxidative phosphorylation. In vivo, only T cells expressing the Δ-CD28 CAR in combination with PD-1 blockade controlled tumor growth. When injected into the pleural effusion of a patient with MPM, the Δ-CD28 CAR could be detected for up to 21 days and showed functionality.Conclusions: Overall, anti-FAP-Δ-CD28/CD3ζ CAR T cells revealed superior in vitro functionality, better tumor control in combination with PD-1 blockade in humanized mice, and persistence up to 21 days in a patient with MPM. Therefore, further clinical investigation of this optimized CAR is warranted. Clin Cancer Res; 24(16); 3981-93. ©2018 AACR.


Asunto(s)
Gelatinasas/genética , Neoplasias Pulmonares/terapia , Proteínas de la Membrana/genética , Mesotelioma/terapia , Neoplasias Pleurales/terapia , Receptor de Muerte Celular Programada 1/genética , Serina Endopeptidasas/genética , Adulto , Anciano , Animales , Antígenos CD28/inmunología , Antígenos CD28/uso terapéutico , Endopeptidasas , Femenino , Gelatinasas/inmunología , Humanos , Inmunoterapia Adoptiva , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Activación de Linfocitos/inmunología , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/genética , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/inmunología , Masculino , Proteínas de la Membrana/inmunología , Mesotelioma/genética , Mesotelioma/inmunología , Mesotelioma/patología , Mesotelioma Maligno , Ratones , Persona de Mediana Edad , Fosforilación Oxidativa , Neoplasias Pleurales/genética , Neoplasias Pleurales/inmunología , Neoplasias Pleurales/patología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Serina Endopeptidasas/inmunología , Transducción de Señal/inmunología , Linfocitos T/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...